- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kegel, Marc (2)
-
Onaran, Sinem (2)
-
Anderson, Chris (1)
-
Baker, Kenneth L. (1)
-
Etnyre, John (1)
-
Gao, Xinghua (1)
-
Le, Khanh (1)
-
Miller, Kyle (1)
-
Sangston, Geoffrey (1)
-
Tripp, Samuel (1)
-
Wood, Adam (1)
-
Wright, Ana (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
It is known that any contact $$3$$-manifold can be obtained by rationally contact Dehn surgery along a Legendrian link $$L$$ in the standard tight contact $$3$$-sphere. We define and study various versions of contact surgery numbers, the minimal number of components of a surgery link $$L$$ describing a given contact $$3$$-manifold under consideration. In the first part of the paper, we relate contact surgery numbers to other invariants in terms of various inequalities. In particular, we show that the contact surgery number of a contact manifold is bounded from above by the topological surgery number of the underlying topological manifold plus three. In the second part, we compute contact surgery numbers of all contact structures on the $$3$$-sphere. Moreover, we completely classify the contact structures with contact surgery number one on $$S^1\times S^2$$, the Poincar\'e homology sphere and the Brieskorn sphere $$\Sigma(2,3,7)$$. We conclude that there exist infinitely many non-isotopic contact structures on each of the above manifolds which cannot be obtained by a single rational contact surgery from the standard tight contact $$3$$-sphere. We further obtain results for the $$3$$-torus and lens spaces. As one ingredient of the proofs of the above results we generalize computations of the homotopical invariants of contact structures to contact surgeries with more general surgery coefficients which might be of independent interest.more » « less
-
Anderson, Chris; Baker, Kenneth L.; Gao, Xinghua; Kegel, Marc; Le, Khanh; Miller, Kyle; Onaran, Sinem; Sangston, Geoffrey; Tripp, Samuel; Wood, Adam; et al (, Experimental Mathematics)In Dunfield’s catalog of the hyperbolic manifolds in the SnapPy census which are complements of L-space knots in S, we determine that 22 have tunnel number 2 while the remaining all have tunnel number 1. Notably, these 22 manifolds contain 9 asymmetric L-space knot complements. Furthermore, using SnapPy and KLO we find presentations of these 22 knots as closures of positive braids that realize the Morton-Franks-Williams bound on braid index. The smallest of these has genus 12 and braid index 4.more » « less
An official website of the United States government
